

Pressure Switch EDS 3400

Description:

The electronic pressure switch EDS 3400 with a flush membrane was designed specifically for applications in which a standard pressure port could become blocked, clogged or frozen by the particular medium used.

Further applications include processes where the medium changes frequently and any residues could cause mixing or contamination of the media.

Like the standard model, the EDS 3400 with flush membrane has a measurement cell with a thin-film strain gauge on a stainless steel membrane for relative pressure measurement in the high pressure range.

The pressure port is achieved with a fully sealed stainless steel front membrane filled internally with a pressure transfer fluid. The process pressure is transmitted hydrostatically to the measurement cell via the pressure transfer fluid.

Depending on the type, the instrument can have up to two switching outputs and one switchable analogue output (4 .. 20 mA or 0 .. 10 V).

Flush membrane Up to 2 switching outputs Analogue output

Technical data:

Input data						
Measuring ranges	bar	40	100	250	400	600
Overload pressures	bar	80	200	500	800	1000
Burst pressure	bar	200	500	1000	2000	2000
Mechanical connection			See model code			
Tightening torque, recommended			20 Nm (G 1/4); 45 Nm (G 1/2)			
Parts in contact with fluid			Mech. connection: Stainless steel Seal: FKM O-ring: FKM			
Pressure transfer fluid			Silicone-free oil			
Output data						
Switching outputs			1 or 2 PNP transistor outputs Switching current: max. 1.2 A per output Switching cycles: > 100 million			
Analogue output, permitted load resistance			Selectable: $4 . .20 \mathrm{~mA}$ load resist. max. 500Ω $0 . .10 \mathrm{~V}$ load resist. $\min .1 \mathrm{k} \Omega$			
Accuracy acc. to DIN 16086, terminal based			$\begin{aligned} & \leq \pm 0.5 \% \text { FS typ. } \\ & \leq \pm 1 \% \text { FS max. } \end{aligned}$			
Temperature compensation, zero point			$\begin{aligned} & \leq \pm 0.015 \% \text { FS } /{ }^{\circ} \mathrm{C} \text { typ. } \\ & \leq \pm 0.025 \% \text { FS } /{ }^{\circ} \mathrm{C} \text { max. } \end{aligned}$			
Temperature compensation, span			$\begin{aligned} & \leq \pm 0.015 \% \text { FS } /{ }^{\circ} \mathrm{C} \text { typ. } \\ & \leq \pm 0.025 \% \text { FS } /{ }^{\circ} \mathrm{C} \text { max. } \end{aligned}$			
Repeatability			$\leq \pm 0.25$ \% FS max.			
Reaction time			$<10 \mathrm{~ms}$			
Long-term drift			$\leq \pm 0.3$ \% FS typ. / year			
Environmental conditions						
Compensated temperature range			$-10 . .+70^{\circ} \mathrm{C}$			
Operating temperature range			$-25 . .+80^{\circ} \mathrm{C}\left(-25 . .+60^{\circ} \mathrm{C}\right.$ for UL spec.)			
Storage temperature range			$-40 . .+80^{\circ} \mathrm{C}$			
Fluid temperature range			$-25 . .+80^{\circ} \mathrm{C} /-25 . .+150{ }^{\circ} \mathrm{C}$ with cooling section			
C © mark			EN 61000-6-1 / 2 / 3 / 4			
${ }_{\text {c }} \mathbf{N N}_{\text {us }} \mathrm{mark}^{1}$			Certificate no.: E318391			
Vibration resistance acc. to DIN EN 60068-2-6 at 10 .. 500 Hz			$\leq 10 \mathrm{~g}$			
Shock resistance acc. to DIN EN 60068-2-27 (11 ms)			$\leq 50 \mathrm{~g}$			
Protection class acc. to DIN EN 60529²)			IP 67			
Other data						
Supply voltage when applied acc. to UL specifications			9 .. 35 V DC without analogue output 18 .. 35 V DC with analogue output - limited energy - acc. to 9.3 UL 61010; Class 2; UL 1310/1585; LPS UL 60950			
Residual ripple of supply voltage			$\leq 5 \%$			
Current consumption			max. 2.455 A total max. 35 mA with inactive switching output max. 55 mA with inactive switching output and analogue output			
Display			4-digit, LED, 7 segment, red, height of digits 7 mm			
Weight			$\sim 150 \mathrm{~g}$			
Note: Overvoltage, override protection and short circuit protection are provided. FS (Full Scale) = relative to complete measuring range ${ }^{1)}$ Environmental conditions acc. to 1.4.2 UL 61010-1; C22.2 No. 61010-1 ${ }^{2}$) With mounted mating connector in corresponding protection class						

Setting options:

All settings available on the EDS 3400 are grouped in 2 easy-to-navigate menus.
In order to prevent unauthorised adjustment of the device, a programming lock can be set.

Setting ranges for the switching outputs:

Switch point function
$\left.\begin{array}{lccc}\hline \begin{array}{l}\text { Measuring } \\ \text { range } \\ \text { in bar }\end{array} & \text { Switch point bar } & \text { Hysteresis } & \begin{array}{l}\text { Incre- } \\ \text { in bar }\end{array} \\ \hline 0 . .40 & 0.6 . .40 & 0.2 . .39 .6 & 0.1 \\ \text { in bar }^{*}\end{array}\right]$

Window function

Measuring Lower switch Upper switch Incre| $\begin{array}{lll}\text { range } \\ \text { in bar }\end{array}$ | $\begin{array}{l}\text { value } \\ \text { in bar }\end{array}$ | $\begin{array}{l}\text { value } \\ \text { in bar }\end{array}$ | $\begin{array}{l}\text { ment }^{*} \\ \text { in bar }\end{array}$ |
| :--- | :--- | :--- | :--- |

$0 . .40$	$0.6 ~ . . ~$	39.2	$0.9 .$.	39.6
$0 . .100$	$1.6 .$.	98.2	2.4 .4	09
$0 . .250$	$4.0 . .245 .5$	$6.0 . .247 .5$	0.5	
$0 . .400$	$6.0 . .392$	$9.0 . .396$	1	
$0 . .600$	$9.0 . .589$	$14 ~ . .594$	1	

* All ranges given in the table can be adjusted by the increments shown.

Additional functions:

- Switching mode of the switching outputs adjustable (switch point function or window function)
- Switching direction of the switching outputs adjustable (N/C or N/O function)
- Switch-on and switch-off delay adjustable from 0.00 .. 99.99 seconds
- Choice of display (actual pressure, peak value, switch point 1, switch point 2, display off)
- Display filter for smoothing the display value during pressure pulsations
- Analogue output signal selectable 4 .. 20 mA or 0 .. 10 V
- Pressure can be displayed in measurement units bar, psi, MPa. The scaling can also be adapted to indicate force, weight, etc.

Pin connections:

M12x1, 4 pole

Pin	EDS	EDS	EDS
	$34 Z 6-1$	$34 Z 6-2$	$34 Z 6-3$
1	+ U $_{B}$	$+U_{B}$	+ U $_{B}$
2	n.c.	SP2	Analogue
3	0 V	0 V	0 V
4	SP1	SP1	SP1

Dimensions:

[G12]

Model code:

EDS $34 \underline{Z} \underline{X}-\underline{X}-\underline{X X X X}-\underline{X X X}-\underline{000}$

Electrical connection
6 = male M12x1, 4 pole only possible on output models "1", "2" and "3"

8 = male $\mathrm{M} 12 \times 1,5$ pole
only possible on output model " 5 "
Output
$1=1$ switching output only in conjunction with electrical connection type "6"
$2=2$ switching outputs only in conjunction with electrical connection type "6"
$3=1$ switching output and 1 analogue output only in conjunction with electrical connection type "6"
5 = 2 switching outputs and 1 analogue output only in conjunction with electrical connection code type "8"

Measuring ranges in bar
0040; 0100; 0250; 0400; 0600
Mechanical connection
G01 = G1/2 A ISO 1179-2
$\mathrm{G} 02=\mathrm{G} 1 / 2$ with additional front O-ring seal
G04 $=$ G1/4 with additional front O-ring seal
G05 = G1/4 A ISO 1179-2
$\mathrm{G} 12=\mathrm{G} 1 / 2$ with additional front O-ring seal and cooling section

Modification number

$000=$ standard

Accessories:

Appropriate accessories, such as mating connectors, can be found in the Accessories brochure.

Note:

The information in this brochure relates to the operating conditions and applications described.
For applications or operating conditions not described, please contact the relevant technical department.
Subject to technical modifications.

